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Abstract

Chromosomal translocation is a common cause of leukaemia1 and the most common chromosome 

translocations found in leukaemia patients involve the mixed lineage leukaemia (MLL) gene2,3. 

AF10 is one of more than 30 MLL fusion partners in leukaemia4. We have recently demonstrated 

that the H3K79 methyltransferase hDOT1L contributes to MLL–AF10-mediated leukaemogenesis 

through its interaction with AF10 (ref. 5). In addition to MLL, AF10 has also been reported to fuse 

to CALM (clathrin-assembly protein-like lymphoid–myeloid) in patients with T-cell acute 

lymphoblastic leukaemia (T-ALL) and acute myeloid leukaemia (AML)6,7. Here, we analysed the 

molecular mechanism of leukaemogenesis by CALM–AF10. We demonstrate that CALM–AF10 

fusion is both necessary and sufficient for leukaemic transformation. Additionally, we provide 

evidence that hDOT1L has an important role in the transformation process. hDOT1L contributes 

to CALM–AF10-mediated leukaemic transformation by preventing nuclear export of CALM–

AF10 and by upregulating the Hoxa5 gene through H3K79 methylation. Thus, our study 

establishes CALM–AF10 fusion as a cause of leukaemia and reveals that mistargeting of hDOT1L 

and upregulation of Hoxa5 through H3K79 methylation is the underlying mechanism behind 

leukaemia caused by CALM–AF10 fusion.
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Our interest in CALM–AF10 fusion protein stems from our recent demonstration that 

hDOT1L, a histone H3K79 methyltransferase8, has an important role in MLL–AF10-

mediated leukaemogenesis5. We demonstrated that mistargeting of hDOT1L to the Hoxa9 

gene by MLL–AF10 results in H3K79 methylation and Hoxa9 upregulation, which 

contributes to leukaemic transformation5. We further demonstrated that the hDOT1L and 

MLL–AF10 interaction involves the octapeptide motif-leucine zipper (OM–LZ) region of 

AF10, this is also required for MLL–AF10-mediated leukaemic transformation9. The 

observation that the OM–LZ region is retained in the CALM–AF10 fusion protein raises the 

possibility that hDOT1L may also function in CALM–AF10-mediated leukaemia. To 

examine the potential role for hDOT1L in CALM–AF10-mediated leukaemia, we first 

attempted to establish a causal relationship between the CALM–AF10 fusion protein and 

leukaemia.

Previous studies have established that the human monocytic leukemia cell line U937 

expresses the CALM–AF10 fusion protein10,11. To determine whether CALM–AF10 is 

relevant for cell proliferation and transformation, CALM–AF10 was knocked down in U937 

cells using a vector-based RNA interference (RNAi) approach5. Results shown in Fig. 1a 

indicate that we were able to generate a stable U937 derivative cell line with significant 

CALM–AF10 knockdown, whereas neither the CALM nor AF10 mRNA is affect by the 

RNAi. Compared with the vector-transduced control, the knockdown (KD1) cells not only 

proliferated more slowly in liquid RPMI media (Fig. 1b), but also resulted in fewer and 

smaller colonies when cultured on methylcellulose (Fig. 1c). Similar results were obtained 

using a second knockdown clone KD2 (data not shown). These results suggest that 

knockdown of CALM–AF10 affects cell proliferation in vitro.

To evaluate the role of CALM–AF10 in vivo, 1 × 107 knockdown and control cells were 

transplanted into NOD–SCID mice. CALM–AF10 knockdown prolonged the survival time 

of the transplanted mice (Fig. 1d). Histological analysis of the mice transplanted with the 

vector-transduced control cells revealed infiltration of leukaemic cells in multiple organs at 

the terminal stage (Fig. 1e). In contrast, leukaemic cells were barely detectable in the organs 

of the mice transplanted with CALM–AF10 knockdown cells when analysed on the same day 

of post-transplantation (Fig. 1e). FACS analysis of cells isolated from bone marrow and 

spleen revealed that transplantation with CALM–AF10 knockdown cells resulted in a 

significantly lower percentage of human cells when compared with control (0.05% versus 

11.14% in bone marrow, 0.10% versus 6.49% in spleen), even though equal numbers of 

cells were transplanted (Fig. 1f). Collectively, these data indicate that the CALM–AF10 

fusion protein contributes to cellular proliferation and maintenance of the transformed state 

of leukaemic cells in vitro and in vivo.

We next analysed whether expression of CALM–AF10 is sufficient to cause bone-marrow 

cell transformation. For this purpose, a methylcellulose-colony serial-plating assay was used 

(Fig. 2a). To examine the role of hDOT1L in CALM–AF10-mediated bone marrow 

transformation, we first established that hDOT1L can interact with CALM–AF10 and that 

the interaction is dependent on the OM–LZ region of AF10 (see Supplementary Information, 

Fig. S1). A colony serial-plating assay was then performed by transduction of mouse bone-

marrow cells with a wild-type or a CALM–AF10 mutant that lacked the hDOT1L 
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interaction region, OM–LZ. RT–PCR analysis confirmed expression of both fusion proteins 

in cells derived from the second round of colonies (Fig. 2b). The colony serial-plating assay 

indicated that the capacity to generate a significant number of third round colonies is 

dependent on the ability of CALM–AF10 to interact with hDOT1L (Fig. 2c). Although the 

colony numbers did not increase in the third round of plating when compared with the 

second round (Fig. 2c), the cells were able to proliferate continuously in mouse fetal thymus 

organ culture (mFTOC) media supplemented with mouse interleukin-3 (mIL-3) for more 

than 6 months (Fig. 2d and data not shown). In contrast, cells that expressed the OM–LZ 

deletion mutant of CALM–AF10 did not generate a significant number of third round 

colonies in the methylcellulose assay and did not continue to proliferate in mFTOC media 

after 6 weeks of culture (Fig. 2c, d). The colonies exhibit typical granulocyte–macrophage-

like morphology (Fig. 2e), which mainly consisted of immature myeloid cells and a few 

macrophages (Fig. 2e). Consistently, FACS analysis indicated that most of the cells express 

high levels of c-Kit (Fig. 2f), although a small population of c-Kitlow CD11b+ cells were 

also observed. Cells expressing other lineage-specific markers, such as Gr-1, B-220, CD3 

and TER-119, were not observed (Fig. 2f), indicating that these c-Kithigh cells are likely to 

be early progenitor bone-marrow cells that have not committed to any haematopoietic cell 

lineages. Based on these results, we conclude that expression of CALM–AF10 fusion 

protein is sufficient to transform progenitor bone-marrow cells and that the hDOT1L 

interaction region is required for the transformation capacity of CALM–AF10. The 

observation that the hDOT1L interaction region of AF10 is required for the transformation 

capacity of CALM–AF10 strongly suggests that hDOT1L has an important role in CALM–

AF10-mediated leukaemogenesis. To further demonstrate the role of hDOT1L mediated 

H3K79 methylation in proliferation and leukaemic transformation by CALM–AF10, wild-

type and H3K79 methyltransferase-defective hDOT1L was expressed in CALM–AF10-

transformed bone-marrow cells and their effects on colony formation in methylcellulose 

were analysed. Expression of the wild-type hDOT1L enhanced the colony formation, 

whereas expression of the mutant hDOT1L strongly suppressed the colony-forming capacity 

of the CALM–AF10-expressing cells (Fig. 2g). Taken together, these results allow us to 

conclude that hDOT1L, and its associated H3K79 methyltransferase activity, have an 

important role in CALM–AF10-mediated leukaemic transformation.

cDNA microarray studies have revealed that overexpression of late Hoxa genes and Bmi-1 

are a characteristic of leukaemias involving CALM–AF10 and some MLL-fusion 

proteins12–14. In particular, over-expression of Hoxa9 has been demonstrated to be crucial 

for leukaemias involving MLL–ENL and MLL–AF10 fusion proteins5,15,16. To understand 

the molecular mechanism by which hDOT1L and H3K79 methylation contribute to 

leukaemogenesis by CALM–AF10, late Hoxa genes and Bmi-1 expression was examined by 

RT–PCR. To avoid potential non-specific effects of small-interfering RNA (siRNA), two 

independent clones expressing siRNAs that target the CALM–AF10 junction (Fig. 1a) were 

analysed. Similar results were obtained in the two independent knockdown clones, KD1 and 

KD2, and both resulted in decreased expression of late Hoxa and Bmi-1 genes when 

compared with the parental U937 cells (Fig. 3a). Consistent with this result, overexpression 

of CALM–AF10 in mouse bone-marrow cells resulted in activation of these genes (Fig. 3a). 

The hDOT1L interaction region did not seem to have a role in Bmi-1 upregulation, although 
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it did affect expression of late Hoxa genes (Fig. 3a). Interestingly, the expression level of 

Hoxa5 was most closely correlated with that of CALM–AF10 in U937 cells, and Hoxa5 was 

significantly upregulated in mouse bone-marrow cells transduced by CALM–AF10 when 

compared with cells transduced by the OM–LZ deletion mutant (Fig. 3a), suggesting that 

hDOT1L functions in Hoxa5 upregulation. Given that the expression levels of Hoxa9 were 

undetectable in the CALM–AF10 transformed cells, Hoxa5 upregulation may have a key 

role in the transformation process. To determine whether Hoxa5 is necessary for CALM–

AF10-mediated leukaemic transformation, we performed colony-replating assays using 

bone-marrow cells isolated from Hoxa5 knockout mice. In parallel, we also analysed the 

effect of Hoxa5 knockout on the transformation capability of MLL–AF10. Although 

CALM–AF10 can transform bone-marrow cells derived from the wild-type mice, as evident 

from increased colony numbers in the third round of plating (Fig. 3b), it fails to transform 

bone-marrow cells deficient for Hoxa5. In contrast, Hoxa5 knockout does not affect the 

transforming capability of MLL–AF10. Based on these results, we conclude that Hoxa5 

upregulation is critical for CALM–AF10 mediated leukaemic transformation.

CALM is a cytoplasmic protein known to function in clathrin assembly17,18. It contains a 

putative CRM1-dependent nuclear-exporting signal (NES) sequence at its carboxy-terminus, 

which is retained in the CALM–AF10 fusion protein19 (see Supplementary Information, Fig. 

S2). On the other hand, AF10 is a nuclear protein and its nuclear-localization signal (NLS) is 

also retained in the CALM–AF10 fusion protein (see Supplementary Information, Fig. S2). 

Depending on the subcellular localization, CALM–AF10 may directly or indirectly 

contribute to Hoxa5 upregulation. To determine the subcellular localization of CALM–

AF10, plasmid DNA that encodes Flag-tagged CALM–AF10 was transfected into U2OS 

cells. In parallel, two constructs encoding CALM–AF10 with deletion on the OM–LZ region 

and Flag-tagged CALM were also transfected. Immunofluorescence microscopy revealed 

that most of the overexpressed CALM–AF10 protein exhibited cytoplasmic distribution 

(Fig. 4a). However, nuclear distribution in wild-type, but not in mutant CALM–AF10 

transfected cells was also noticeable (Fig. 4a, b). In contrast, CALM exhibited a mesh-like 

cytoplasmic distribution (Fig. 4a), which is characteristic of clathrin-related proteins18. 

Interestingly, when CALM–AF10 is coexpressed with hDOT1L, CALM–AF10 becomes 

localized to the nucleus (Fig. 4c, d). High resolution analysis of the proteins indicates that 

they colocalize in the nucleus (Fig. 4e). Importantly, this change in CALM–AF10 

localization depends on its ability to interact with hDOT1L, as coexpression of hDOT1L 

with a CALM–AF10 mutant that lacks the OM–LZ region has no effect on the localization 

of the fusion protein (Fig. 4c, d). In addition, hDOT1L did not affect CALM localization 

(Figs. 4c, d). These results strongly suggest that hDOT1L interacts with and retains CALM–

AF10 in the nucleus and that the nuclear CALM–AF10 observed in Fig. 4a and b is likely to 

be due to the interaction of CALM–AF10 with endogenous hDOT1L.

The observation that CALM–AF10 can localize to the nucleus and interact with hDOT1L 

raises the possibility that Hoxa5 might be a direct target of CALM–AF10. To address this 

possibility, binding of CALM–AF10 across the entire Hoxa5 gene was analysed by 

chromatin immunprecipitation (ChIP) assay using the CALM–AF10 transformed cells 

described in Fig. 2. The fusion proteins bound to a region covered by amplicons e–g (Fig. 
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5b, lanes 5–7). The observed binding is specific, as no signal is observed in a parallel ChIP 

experiment using cells transduced by an empty vector. Given that CALM–AF10 interacts 

with the H3K79 methyltransferase hDOT1L, we expect the CALM–AF10 binding sites to be 

enriched for H3K79 methylation in the CALM–AF10 transformed cells. ChIP results 

presented in Fig. 5c demonstrate that H3K79 methylation correlates with the presence of 

CALM–AF10 in the transformed cells but not in the control cells. Consistent with the 

hypothesis that H3K4 methylation correlates with gene activation and H3K9 methylation 

correlates with gene repression, H3K9 methylation was observed at the Hoxa5 gene 

promoter when it is silenced in non-transformed bone-marrow cells (Fig. 5c), whereas H3K4 

methylation was observed when the gene is activated in CALM–AF10 transformed cells 

(Fig. 5c). All the ChIP signals are specific as they are not present in a control region covered 

by amplicon k.

To examine whether H3K79 methylation of the Hoxa5 gene in CALM–AF10 transformed 

cells depends on hDOT1L recruitment and its enzymatic activity, we focused on the 

transcription start site encompassed by amplicon e. As antibodies that can specifically ChIP 

CALM–AF10 are not available, U937 cells were transduced with retroviruses expressing 

Flag-tagged CALM–AF10 in the presence or absence of cotransduction of a HA-tagged 

wild-type or mutant hDOT1L. After selection, the cells were subjected to ChIP analysis. 

Overexpression of CALM-AF10 lead to recruitment of hDOT1L, concomitant with 

increased H3K79 methylation and overexpression of hDOT1L significantly increased the 

hDOT1L recruitment concomitant with increased levels of H3K79 methylation (Fig. 5d). In 

contrast, overexpression of the enzymatically defective hDOT1L mutant, although increased 

its recruitment, resulted in lower level of H3K79 methylation when compared with that of 

the cells transduced by CALM–AF10 alone, supporting the notion that the mutant hDOT1L 

functions in a dominant–negative fashion (Fig. 2g). These results are consistent with a 

model in which CALM–AF10, in association with hDOT1L, is targeted to the Hoxa5 gene. 

This targeting results in upregulation of the Hoxa5 gene, which in turn contributes to 

leukaemic transformation.

Using bone-marrow transformation and transplantation assays, we demonstrate that CALM–

AF10 fusion is both necessary and sufficient for leukaemogenesis (Figs 1 and 2). In 

addition, we provide evidence that hDOT1L has an important function in CALM–AF10 

mediated leukaemic transformation (Fig. 2c, d, g). Furthermore, we demonstrated that 

hDOT1L contributes to CALM–AF10-mediated leukaemic transformation by preventing 

nuclear export of CALM–AF10 (Fig. 4), and by methylation of H3K79 at the Hoxa5 gene 

(Fig. 5), which contributes to its activation. Finally, we showed that Hoxa5 is specifically 

required for CALM–AF10 mediated leukaemic transformation (Fig. 3b). Thus, our studies 

not only establish CALM–AF10 as a cause of leukaemic transformation, but also reveal that 

Hoxa5 and hDOT1L as important players in leukaemias that involve CALM–AF10 fusion.

We have previously demonstrated that hDOT1L also contributes to leukaemogenesis by 

MLL–AF10 (ref. 5). Although leukaemogenesis mediated by MLL–AF10 and CALM–AF10 

both involve hDOT1L and Hox gene activation, the underlying mechanisms are not the 

same. Unlike Hoxa9, Hoxa5 does not seem to have a key role in MLL–AF10-mediated 

leukaemic transformation (Fig. 3b). It worth noting that although Hoxa9 overexpression has 
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been observed in a number of leukemias, its overexpression is not always required for 

leukaemic transformation20. This highlights the importance of distinguishing over-expressed 

Hoxa genes that are necessary for leukaemic transformation from those not essential for 

transformation. A second difference lies in their distinct immunophenotypes. Whereas 

CALM–AF10 transformed bone-marrow cells are mainly lineage-uncommitted progenitors 

(positive only for c-Kit), the cells transformed by MLL–AF10 tend to differentiate into 

myeloid lineage with expression of lineage markers (Fig. 2f and see Supplementary 

Information, Fig. S3)5. This observation is consistent with the fact that leukaemia patients 

with CALM–AF10 often develop haematologic malignancy of multi-lineages — an 

indication that the leukaemic cells have originated from a very early stage of haematopoietic 

development21. Upregulation of different Hoxa genes may be linked to these phenotypical 

differences. For example, constitutive expression of Hoxa5 in human CD34+ cells prevents 

differentiation toward erythrocytes and increases myelopoiesis22. Although there is currently 

no report that overexpression of Hoxa5 in haematopoitic stem cells can directly cause 

leukaemic transformation, many leukaemia cell lines without MLL-fusion have a higher 

incidence of overexpressing Hoxa5 than overexpressing Hoxa9 (ref. 23), indicating that 

upregulation of Hoxa5 may not be limited to leukaemia mediated by CALM–AF10. The 

third difference is that DOT1L also contributes to the retention of CALM–AF10 in nucleus, 

which is necessary for targeting CALM–AF10 to the Hoxa5 gene. Despite the difference in 

the particular Hox genes involved, the catalytic activity of hDOT1L and the interaction 

between hDOT1L and AF10 are both important in leukaemogenesis involving CALM–

AF10 and MLL–AF10. Therefore, inhibition of the catalytic activity of hDOT1L or 

interaction between hDOT1L and AF10 may constitue a useful therapeutic treatment for 

leukaemia patients with CALM–AF10 or MLL–AF10 fusion.

METHODS

CALM–AF10 knockdown in U937 cells and transplantation

DNA encoding a 21 bp siRNA (5′-ATCAGGAGCACAGAGATGTGA-3′) that targets the 

junction of CALM and AF10 was subcloned into pMSCV–puro with an H1 gene promoter. 

Transduced cells were selected by puromycin (0.5 μg ml−1) and cloned by limiting dilution. 

Knockdown efficiency was evaluated by RT–PCR. Five to ten week old NOD–SCID mice 

were irradiated (300 rad) and after 6 h, CALM–AF10 knockdown and vector-transduced 

U937 cells were intraorbitally injected (1 × 107 cells per mouse, n = 6 for each group). Mice 

were monitored and killed at the terminal stage for histology and FACS analysis. Some 

knockdown mice were killed before the terminal stage for control experiments.

Mouse bone-marrow cell isolation and transduction

Four to ten week old C57BL/6 mice were used to harvest bone-marrow cells. Hoxa5-

deficient bone-marrow cells were obtained from 8–10 week old 129Sv/Ev–MF1 mice24. 

Mice were treated with 150 mg kg−1 5-fluorouracil (5FU) for 5 days before bone-marrow 

cells were harvested. Lin− cells were enriched using EasySep mouse haematopoietic 

progenitor cell enrichment kit (Stem Cell Technology, Vancouver, Canada) and used for 

retroviral transduction. cDNA of CALM–AF10 was cloned from U937 cells by RT–PCR. 

Wild-type and OM–LZ deletion mutant CALM–AF10 were subcloned into pMSCV–neo 
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downstream of a Flag-tag. Retrovirus preparation, transduction and colony assays were 

performed as previously described5. In the experiments presented in Fig. 3b, G418 (1 mg 

ml−1) was added to the methylcellulose until the 3rd round, to prevent the growth of 

untransduced cells. Colonies on methylcellulose were picked and further cultured in 

mFTOC (10% FBS in RPMI1640, 1 mM MEM sodium pyruvate, 1% MEM non-essential 

amino acid, 10 mM HEPES at pH 7.3, 50 μm 2-mercaptoethanol with 5 ng ml−1 mIL-3 

(Peprotech, Rocky Hill, NJ). Transduction of DOT1L with blasticidin-resistant retrovirus 

was previously described5. For transduction of U937 cells, retroviruses expressing 

hDOT1L–HA with a neomycin-resistant gene were used.

Cell culture, transfection, immunostaining and immunoprecipitation

U937 cells were maintained in RPMI 1640 supplemented with 10% fetal calf serum. 293T 

or U2OS cell were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal calf serum. Transfection was performed by using Fugene6 

(Roche, Indianapolis, IN). Twenty-four hours after transfection, U2OS cells were fixed with 

3% paraformaldehyde and permiabilized with 0.1% Triton X-100 for 5 min. Flag M2 

(Sigma, St Louis, MO) and hDOT1L5 antibodies were used as primary antibodies for 

immunostaining. DAPI was used for nuclear staining.

For immunoprecipitation, 293T cells were harvested 36 h after transfection and washed with 

ice-cold PBS before being lysed with lysis buffer (50 mM HEPES–KOH at pH 7.9, 420 mM 

KCl, 0.1 mM EDTA at pH 8.0, 5 mM MgCl2, 20% glycerol, 1 mM DTT, 1 mM 

phenylmethylsulfonyl fluoride, 1 μg aprotinin per ml, 0.5 μg leupeptin per ml and 0.7 μg 

pepstatin per ml). After incubation for 1 h at 4 °C, cells were gently sonicated and the cell 

debris was removed by centrifugation at 14,000g for 30 min. Anti-Flag M2 agarose beads 

(Sigma) were added to 0.5 mg protein extracts and incubated for 3 h at 4 °C. After five 

washes with lysis buffer containing 500 mM KCl, the immunoprecipitates were analysed by 

western blotting.

FACS analysis

Cells harvested from NOD–SCID mice and the mouse bone-marrow cells transduced by 

CALM–AF10 were incubated for 20 min on ice with CD16–CD32 Fc block (BD 

Pharmingen, Franklin Lakes, NJ) and subsequently stained for 30 min on ice with 

phycoerythrin-, fluorescein isothiocyanate- and allophycocyanin-conjugated isotype controls 

and monoclonal antibodies against human CD45, mouse CD11b, Gr-1, c-kit, B220, CD3 and 

Ter119 (BD Pharmingen). Cells were then washed with 2% FBS-containing PBS and 

analysed using a FACSCalibur (BD Pharmingen). Data collected were analysed with 

Summit V3.1 (Cytomation Inc., Fort Collins, CO).

RT–PCR analysis of Hox genes, Bmi-1 and CALM–AF10

Total RNA was isolated from vector-transduced or CALM–AF10-knockdown U937 cells or 

colonies of mouse bone-marrow cells derived from second and third round of wild-type or 

mutant CALM–AF10 transduced cells using RNeasy (Qiagen, Valencia, CA). Up to 1 μg of 

total RNA was treated with RNase-free DNase I and applied for reverse transcription using 

ImProm-II (Promega, Madison, WI) according to manufacturer’s protocol. Half a microliter 
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of cDNA from the 20 μl RT reaction was used as template for PCR amplification using 

Platinum Taq Polymerase (Invitrogen, Carlsbad, CA) with 33–35 cycles. One tenth of the 

cDNA was used for β-actin and GAPDH amplification. Primer sequences for Hoxa and 

Bmi-1 are shown in the Supplementary Information, Table S1. Primers for detection of 

CALM and AF10 used in Fig. 1a do not amplify the CALM–AF10 gene and the primers for 

CALM–AF10 used in Figs 1a, 2b and 3a do not amplify CALM or AF10. The primer 

sequences are shown in the Supplementary Information, Table S1.

ChIP assay

For modification-specific anti-histone and anti-Flag antibody Chip, 1 × 106 cells were used. 

For immunoprecipitation, 1.5 μg of each antibody was used. The procedure used is similar to 

a previous publication5. For ChIP of U937 cells using anti-DOT1L and anti-H3K79me2 

antibodies 5 × 106 cells were used. Lysis buffer containing 0.5% NP-40 and 0.5% Triton 

X-100, instead of 1% SDS, was used. After RNase A and proteinase K treatment, DNA was 

purified by PCR purification kit (Qiagen) and amplified by PCR using either Platinum Taq 

Polymerase (Invitrogen) or Ex-Taq (TaKaRa, Otsu, Japan), with 35 cycles for modification-

specific histone antibodies and 37–38 cycles for Flag and DOT1L antibodies. Modification-

specific histone antibodies used are as follows: anti-H3K4me3 (Abcam, Cambridge, UK); 

anti-H3K9me2 (Upstate, Lake Placid, NY); and anti-H3K79me2 (ref. 8). Primer sequences 

are listed in the Supplementary Information, Table S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Knockdown of CALM–AF10 in U937 cells impairs their proliferation and leukaemogenesis 

in vitro and in vivo. (a) Schematic representation of the fusion protein and the target region 

for knockdown. The arrows indicate the position of primers used for RT–PCR. The RT–

PCR results evaluating the knockdown efficiency are also shown. β-actin served as a 

control. V, vector control; KD1, knockdown clone 1. (b, c) Effects of CALM–AF10 

knockdown on cell proliferation in RPMI medium (b) and methylcellulose (c). Only 

colonies having over 50 cells were counted. The numbers below the pictures in c represent 

colony numbers ± s.d. The experiment was repeated twice. n = 4 for V and KD1 in both 

experiments. The scale bar represents 1 mm. (d–f) Effects of CALM–AF10 knockdown in 

vivo. Knockdown CALM–AF10 extends survival time of transplanted mice when compared 

with those receiving transplantation of parental U937 cells (d). Haematoxylin and eosin 

staining demonstrating that mice transplanted with CALM–AF10 knockdown cells less 

infiltration of leukaemic cells in spleen, kidney and pancreas when compared with mice 

transplanted with control U937 cells (e). Asterisks indicate renal tubules and arrows indicate 
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infiltration of transplanted U937 cells in the pancreatic tissue. Original magnification: 40× 

for spleen, 20× for others. The scale bar represents 50 μm. FACS analysis of proliferation in 

bone marrow and spleen of transplanted U937 hCD45-positive cells (f). CALM–AF10 

knockdown affects U937 cell proliferation in both bone marrow and spleen.
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Figure 2. 
Expression of CALM–AF10 is sufficient to cause mouse bone-marrow cell transformation 

and hDOT1L has an important role in this process. (a) Schematic representation of the 

retroviral transduction procedures described in the Methods. (b) Confirmation of expression 

of the transduced genes by RT–PCR. U937 cells serve as a positive control. GAPDH serves 

as a control for equal input of RNA in RT–PCR. (c) Serial colony-plating assay of bone-

marrow cells transduced by wild-type and mutant CALM–AF10 with vector control. The 

average colony numbers ± s.d. of three independent experiments are shown. The P value of 

the third round colony numbers between the wild-type and the OM–LZ deletion mutant is 

also indicated. (d) Growth curve of the transduced cells in mFTOC culture. (e) Morphology 

of colonies formed in the third round of methylcellulose assays transduced by CALM–

AF10. The scale bar represents 0.5 mm. Wright-Giemsa-stained cytospin preparation of 
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cells from the third round of colonies is also shown. The scale bar represents 50 μm. (f) 
Immunophenotyping by FACS of CALM–AF10 transformed cells. The cell surface markers 

used in the analysis are indicated. (g) Schematic representation of the second transduction 

procedure and the effect of wild-type and catalytic-deficient hDOT1L on colony formation 

of CALM–AF10 transformed cells. RV, retrovirus.
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Figure 3. 
Hoxa5 is critical for leukaemic transformation by CALM–AF10. (a) RT–PCR analysis of 

the expression of late Hoxa genes and Bmi-1 in vector control (V) and two independent 

CALM–AF10 knockdown clones (KD1 and KD2) derived from U937 cells, and in mouse 

bone-marrow cells derived from second round colonies and transduced by wild-type and 

OM–LZ deletion CALM–AF10 mutants. Lack of detectable signal for Hoxa9 is not due to 

primer failure as the same primers detected Hoxa9 expression in MLL–ENL transduced 

cells. (b) Hoxa5 knockout attenuates the transformation capability of CALM–AF10, but has 

no effect on that of MLL–AF10. Serial colony-plating assays were performed as in Fig. 2a. 

The average colony numbers ± s.d. of three independent experiments is shown. Due to 

embryonic lethality of Hoxa5 knockout in C57B6 strain, the bone-marrow cells used in the 

assays were derived from Hoxa5 knockout and wild-type littermates of 129Sv/Ev-MF1 

strain24.
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Figure 4. 
hDOT1L retains CALM–AF10 in the nucleus. (a) Subcellular distribution of wild-type and 

OM–LZ deletion mutants, Flag–CALM–AF10 and CALM in U2OS cells. Transfected cells 

(red) are indicated with arrows. Nuclei are stained with DAPI (blue). (b) Analysis of nuclear 

staining by Flag antibody with confocal microscopy. (c) Immnofluorescent staining of 

U2OS cells cotransfected with hDOT1L (green) and Flag–CALM–AF10 (red). (d) 

Quantification of the cells presented in c. N, cells expressed in the nucleus; C, cells 

expressed in the cytoplasm. (e) Confocal microscopy analysis of the nuclear localization of 

hDOT1L and CALM–AF10 when coexpressed. The two staining patterns observed are 

shown. The pattern shown in the lower panels with more dots was predominant (~80%). The 

scale bar represents 10 μm in a, b and e, and 20 μm in c.
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Figure 5. 
CALM–AF10 in association with hDOT1L binds to Hoxa5 in both the promoter and 

downstream regions to mediate local H3K79 methylation. (a) A schematic representation of 

the Hoxa5 gene locus and amplicons used for ChIP assays. Ex, exon. (b) ChIP analysis of 

the location of CALM–AF10 across the Hoxa5 locus in CALM–AF10 transduced and 

control bone-marrow cells. Input = 0.5%. (c) ChIP analysis of histone modifications in 

selected regions of the Hoxa5 gene. Cells and antibodies used in the assay are indicated. 

Input = 2%. (d) ChIP analysis of the DOT1L-dependent H3K79 methylation in amplicon e 

of the Hoxa5 gene in control and transduced U937 cells. Input = 0.5%.
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