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5-Methylcytosine (5mC) can be converted to

5-hydroxymethylcytosine (5hmC) in mammalian cells by the

ten-eleven translocation (Tet) family of dioxygenases. While

5mC has been extensively studied, we have just started to

understand the distribution and function of 5hmC in

mammalian genomes. Despite the fact that this new epigenetic

mark has only been discovered three years ago, exciting

progress has been made in understanding its generation, fate,

and genomic distribution. In this review we discuss these

progresses as well as the recent advance in the single-base

resolution mapping of 5hmC.
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Introduction
DNA methylation at the 5-position of cytosine (5mC) in

mammals is essential for normal development and plays

important roles in a variety of biological processes, in-

cluding transcriptional regulation and maintenance of

genome stability. It is the only known epigenetic mark

of DNA until 2009, when 5-hydroxymethylcytosine

(5hmC) was discovered as another relatively abundant

cytosine modification in mouse Purkinje neurons and

embryonic stem cells (ESCs) [1,2]. The ten-eleven trans-

location (Tet) family proteins are responsible for the

conversion of 5mC to 5hmC [2,3]. Follow-up studies

showed that Tet proteins can further oxidize 5hmC to

generate 5-formylcytosine (5fC) and 5-carboxylcytosine
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(5caC), which can then be removed from the genome by

thymine-DNA glycosylase (TDG) [4��,5��,6�]. This

suggests that 5hmC may act as a DNA demethylation

intermediate. In addition, because 5hmC not only impairs

the binding of 5mC binding proteins [7], but also has its

own unique binding protein [8] and shows unique distri-

bution patterns in the genome [9–20,21�,22�], 5hmC may

also serve as an epigenetic mark with unique regulatory

functions.

In the following sections, we will briefly discuss recent

progress in our understanding of 5hmC with an emphasis

on its generation, fate, and distribution in mammalian cells.

TET family proteins oxidize 5mC to generate
5hmC in mammalian cells
Although it was not recognized as an epigenetic mark

until recently, 5hmC has long been known to exist in

natural DNA. About sixty years ago, it was found that all

cytosines in the DNA of T-even bacteriophages (e.g. T-4

bacteriophage) are replaced by 5hmC [23], which can

be further glucosylated to prevent the phage DNA from

being degraded by bacterial restriction enzymes [24–26].

It is worth noting that 5hmC in phage DNA is not derived

by in situ DNA modifications. Instead, premodified bases

are incorporated into DNA by replacement of deoxycy-

tidine triphosphate (dCTP) with hydroxymethyldeoxy-

cytidine triphosphate (hmdCTP) during DNA synthesis

[24].

While the generation and function of 5hmC in bacterio-

phages have been well-studied, we have only started to

understand the function of 5hmC in mammalian gen-

omes. Although 5hmC in mammalian DNA was first

reported over forty years ago [27], it did not draw much

attention as the experiments could not be reproduced by

others and 5hmC itself was simply considered as a product

of 5mC oxidative damage in mammalian genomes

[28–30]. There were very few reports on 5hmC in mam-

mals until 2009, when two groups provided compelling

evidence for the existence of 5hmC in mouse Purkinje

neurons and ESCs using both thin layer chromatography

(TLC) and mass spectrometry analysis [1,2]. More impor-

tantly, through a delicate homology search for the trypa-

nosome thymidine hydroxylases JBP1 and JBP2, human

TET1 protein was identified to have the capacity to

convert 5mC to 5hmC [2,31]. Using a mechanism-based

approach coupled with sequence homology search, we

independently identified and demonstrated that all mem-

bers of the mouse Tet protein family (Tet1–3) have the

5mC hydroxylase activity both in vivo and in vitro [3].
Current Opinion in Cell Biology 2013, 25:289–296
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Schematic diagrams of the Tet proteins. Three conserved domains are indicated in mouse Tet proteins, including CXXC zinc finger, cysteine-rich

region (Cys-rich), and the double-stranded b-helix (DSBH) fold of the 2OG-dependent and Fe(II)-dependent dioxygenase domain (2OGFeDO). Note

that Tet3 has a shorter form, which starts at amino acid 136, that does not contain the CXXC domain. For the 2OGFeDO domain, a multiple sequence

alignment of selected JBP/Tet family proteins is shown. Sequences used in the alignment include the Trypanosoma brucei JBP1 (Q9U6M3) and JBP2

(Q57X81); human TET1 (NP_085128), TET2 (NP_001120680), and TET3 (ADU77107); and mouse Tet1 (NP_001240786), Tet2 (ACY38292), and Tet3

(ADR57137). Predicted Fe(II) and 2OG-binding sites are indicated, and the conserved strands that constitute the DSBH fold are shown above the

multiple sequence alignment. Numbers represent the amino acid numbers.
Sequence comparisons revealed that Tet proteins are a

distinct family of 2-oxoglutarate (2OG)-dependent and

Fe(II)-dependent dioxygenases (2OGFeDOs). Similar to

most 2OGFeDO superfamily members (e.g. JmjC-

domain-containing histone demethylases), the catalytic

domain of Tet proteins contains eight conserved strands,

which constitute a putative double-stranded b-helix

(DSBH) fold (Figure 1). Unique features are also found

in Tet proteins. These features include the cysteine-rich

domain adjacent to the N-terminal of the core DSBH fold

and the large non-conserved low-complexity region be-

tween strands 4 and 5 [31,32]. While the functions of

these distinct insertions are unknown, the hydroxylation

of 5mC catalyzed by Tet proteins seems to be a canonical

2OGFeDO-catalyzing oxidative reaction that requires

Fe(II) and 2OG as cofactors and uses oxygen to oxidize

the 5-methyl group in 5mC to generate 5hmC [3].

Although it is not rigorously confirmed, Tet-mediated

oxidation of 5mC seems to be the only source of 5hmC in

mammalian cells. First, the existence of 5hmC in the

genome requires pre-existing 5mC, as 5hmC is elimi-

nated in DNA methyltransferase (DNMT) triple knock-

out (Dnmt1�/�/Dnmt3a�/�/Dnmt3b�/�) ESCs in which

5mC is absent [9,18]. Second, depletion of Tet1 leads

to a significant decrease of 5hmC in ESCs [2,3,9,33,34].
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Third, paternal-genome conversion of 5mC into 5hmC

fails to occur in Tet3-deficient mouse zygotes [35�].

5hmC-mediated DNA demethylation
Because 5hmC is converted from 5mC, it was naturally

considered to have a direct role in DNA demethylation

[36]. This notion has been supported by many recent

studies [4��,5��,37,38�,39,40�,41]. Several 5hmC removal

pathways have been reported (Figure 2). First, passive

dilution of 5hmC during DNA replication is observed in

preimplantation embryos [38�]. Consistently, the main-

tenance DNA methyltransferase DNMT1 methylates

hemi-hydroxymethylated CpGs with a much lower effi-

ciency to hemi-methylated CpGs in vitro [30,42].

Second, Tet proteins can further oxidize 5hmC to 5fC and

5caC, which can be efficiently removed by TDG

[4��,5��,6�]. Subsequent repair of the resulting abasic site

by base excision repair (BER) can regenerate an

unmethylated cytosine. This is a very plausible active

demethylation pathway as all the involved enzymatic

reactions have been demonstrated to be robust in vitro
and in cultured cells [4��,5��,6�]. Interestingly, 5fC and

5caC can also be passively diluted in certain biological

processes such as during mouse preimplantation devel-

opment when Tdg is almost not detectable [43].
www.sciencedirect.com
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Figure 2
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Proposed DNA demethylation pathways that involve 5hmC. DNA methylation (5mC) is established and maintained by DNA methyltransferases

(DNMTs). In mammals, 5mC can be oxidized by the Tet proteins to generate 5hmC. 5hmC is recognized poorly by Dnmt1 and can be diluted during

DNA replication. 5hmC can also be further oxidized by Tet proteins to produce 5fC and 5caC. Alternatively, 5hmC may be deaminated by

AID/APOBECs to become 5hmU. 5fC, 5caC, and 5hmU can be excised from DNA by glycosylases. In addition, DNMT3A and DNMT3B may directly

dehydroxymethylate 5hmC to generate unmodified C. Note that solid lines represent processes with strong evidence, while the dashed lines indicate

processes which need to be further confirmed controversial process.
Third, deamination followed by the action of DNA

glycosylases and the BER pathway is yet another pathway

that may be involved in the removal of 5hmC. A previous

study showed that co-transfection of various AID/APO-

BEC deaminases with either a 5mC-containing or 5hmC-

containing reporter into HEK293 cells promotes

demethylation of the 5hmC-containing, but not 5mC-

containing reporter, along with the generation of 5hmU in

the cells [37]. In addition, DNA glycosylases SMUG1 and

TDG exhibit robust activity on the 5hmU:G mismatch,

the expected deamination product of 5hmC, in double-

stranded DNA [40�]. However, a recent systematic in
vitro biochemical study has revealed that AID/APOBEC

deaminases have no detectable deamination activity on

5hmC and have reduced activity on 5mC relative to

unmodified cytosine, which may be due to the increased

steric bulk at C5 position [44]. Thus, the mechanism

underlying AID-mediated DNA demethylation is likely

to be due to 5mC deamination rather than 5hmC deami-

nation [45,46]. Further studies are required to confirm this

point in vivo.

Fourth, a recent in vitro study suggests an unexpected

role of de novo DNA methyltransferases Dnmt3a and

Dnmt3b in direct conversion of 5hmC to unmodified

cytosine under oxidative conditions [47], indicating that

Dnmt3 proteins may act as dehydroxymethylases. This
www.sciencedirect.com 
attractive one-step removal of 5hmC is supported by an

earlier in vitro study, which shows that the bacterial DNA

methyltransferase M.HhaI has dehydroxymethylation

activity toward 5hmC [48]. However, the reported in vitro
activity needs further confirmation and more importantly

the significance of this novel activity needs to be demon-

strated in vivo. Finally, for all these 5hmC-mediated

DNA demethylation pathways discussed above, their

physiological context and relative importance need to

be further addressed.

Maintenance of 5hmC during DNA replication
Accumulating evidence suggests that 5hmC not only can

serve as an intermediate of DNA demethylation, but also

functions as an epigenetic mark with unique regulatory

functions. For instance, 5hmC has its own unique binding

protein to read the epigenetic information it carries [8],

and it also shows unique genomic distribution patterns

that is related to transcriptional activities [9–20,21�,22�].
Most of the epigenetic marks are faithfully maintained to

ensure that the epigenetic information they carry can

propagate through mitotic divisions. However, whether/

how 5hmC is maintained during DNA replication is still a

complete mystery.

In mammalian cells, 5mC is maintained during DNA

replication mainly by DNMT1 [49]. The SRA domain
Current Opinion in Cell Biology 2013, 25:289–296
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containing protein UHRF1 is also essential in mainten-

ance methylation as it recruits DNMT1 to methylated

DNA during DNA replication [50,51]. In vitro studies

showed that UHRF1 binds to 5hmC-containing and

5mC-containing DNA with similar affinity [52]. How-

ever, DNMT1 methylates hemi-hydroxymethylated

CpGs (5hmC-C) with a much lower efficiency than that

of hemi-methylated  CpGs (5mC-C) [30,42]. Thus, for

5hmC containing CpG sites, it is still difficult to predict

the modification states of the cytosines in the newly

synthesized strand. If fully hydroxymethylated CpGs

are immediately generated during DNA replication,

UHRF1, DNMT1, and Tet proteins may function in a

complex to maintain 5hmC during DNA replication.

Alternatively, if hemi-hydroxymethylated CpGs (5mC-

5hmC or C-5hmC) are generated, Tet proteins or both

DNMTs and TETs need to be targeted to these hemi-

hydroxymethylated CpGs after DNA replication to

maintain 5hmC. However, it is also possible that

5hmC is not maintained or maintained in a less faithful

way during DNA replication. For instance, genomic

DNA hydroxymethylation pattern may be re-established

based on other epigenetic modifications after DNA repli-

cation is accomplished. More detailed studies using cell

cycle synchronized cells are needed to address all these

possibilities.
Figure 3
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Genomic distributions of 5hmC
Since 5hmC is relatively abundant in ESCs and brain

tissues, extensive studies have been carried out to deter-

mine the genomic distribution of 5hmC in both human

and mouse ESCs and brain tissues [9–20,21�,22�]. Two

types of approaches have been used in mapping the

genomic distribution of 5hmC. The first uses affinity-

based approaches, in which 5hmC-specific antibodies

[9,14,18–20] or chemical/enzymatic labeling of 5hmC

[10–13,15–17] are first used to enrich 5hmC-containing

DNA from fragmented genomic DNA. Then, the 5hmC-

enriched DNA is subjected to high-throughput sequen-

cing. Through an evaluation with 5hmC-containing oli-

gos, it has been suggested that chemical labeling-based

methods can better enrich genomic DNA fragments with

lower 5hmC density than antibody-based methods [11].

However, all the different affinity-based methods pro-

duced similar 5hmC distribution maps in mouse ESCs

[53], demonstrating that these methods are largely equiv-

alent in detecting 5hmC-enriched regions in the genome.

This is likely explained by the fact that 5hmC are highly

clustered in the genome [22�].

These affinity-based 5hmC-profiling studies have

revealed several features regarding the genomic distri-

bution of 5hmC in mouse ESCs (Figure 3). First, 5hmC is
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istribution in the genome of mouse ESCs. 5hmC is preferentially enriched
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Table 1

Behavior of cytosine and its derivatives in bisulfite treatment and

the following sequencing step. 5gmC, b-glucosyl-5-hydroxy-

methylcytosine; CMS, cytosine-5-methylenesulfonate.

Base After bisulfite treatment Sequencing result

C U T

5mC 5mC C

5hmC CMS C

5gmC 5gmC C

5fC U T

5caC 5caU T
enriched in gene-rich euchromatic regions, particularly at

transcription start sites (TSSs), promoters, and exons

[9,11,18–20]. This agrees well with 5hmC immunostain-

ing results of both ESCs and somatic cells, where 5hmC

accumulates on euchromatin marked by H3K4me2/3, but

not on heterochromatin marked by H3K9me3 [9,15,54].

Second, 5hmC is preferentially located at genomic

regions with moderate CpG density [18,19]. Consistently,

5hmC is enriched at CpG islands (CGIs) with low to

medium GC-content, as well as promoters with inter-

mediate CpG density [9,18,20]. Third, 5hmC is specifi-

cally enriched at gene promoters associated with bivalent

domains, which are marked with both the transcriptional

permissive mark H3K4me3 and the Polycomb repressive

complex 2 (PRC2) deposited repressive mark H3K27me3

[11,18,19]. Fourth, 5hmC is relatively enriched in the

gene bodies of actively transcribed genes, especially at

the 30 end [19,20]. Finally, 5hmC is located at many

intergenic cis-regulatory elements such as active enhan-

cers, pluripotent transcription factor-binding sites, and

insulator-binding sites [9,11,19]. The findings in human

ESCs and in neuronal cells are largely consistent with the

above observations in mouse ESCs, with only minor

differences. 5hmC enrichment at cis-regulatory elements

is more significant in human ESCs as compared to mouse

ESCs [14,15]. Additionally, 5hmC is less enriched at

TSSs and CGIs in both mouse and human cerebellums

[13,17], suggesting that dynamic changes of 5hmC occur

during differentiation.

While these affinity-based methods have provided initial

genome-wide profiles and biological insights of 5hmC,

such approaches have relatively low resolution and cannot

quantitatively determine 5hmC abundance at each modi-

fied site in a population of cells. The recently developed

second category of approaches enables single-base resol-

ution mapping of 5hmC, allowing for quantitative

measurement of 5hmC levels. These approaches include

oxidative bisulfite sequencing (oxBS-Seq) [21�] and Tet-

assisted bisulfite sequencing (TAB-Seq) [22�]. In TAB-

Seq, Yu et al. first used b-glucosyltransferase (bGT) to

convert 5hmC to b-glucosyl-5-hydroxymethycytosine

(5gmC), which protects 5hmC from further TET oxi-

dation. They then treated the DNA from the first step

with an excess amount of Tet1 protein to convert nearly

all 5mCs to 5caCs. Finally, they performed bisulfite

sequencing (BS-Seq) on the treated genomic DNA. In

BS-Seq analysis, 5mC, 5hmC, and 5gmC all appear as Cs

in the resulting sequence [22�,55]. On the other hand, 5fC

and 5caC appear as thymines [4��,21�] (Table 1). Thus, all

Cs from the TAB-Seq results are originally 5hmC.

Similarly, in the oxBS-Seq method, Booth et al. used

KRuO4 to chemically oxidize 5hmC to 5fC. Thus, all

Cs from the oxBS-Seq result are originally 5mC. Sub-

tracting oxBS-Seq hits (5mC) from conventional BS-Seq

hits (both 5mC and 5hmC) gives base-resolution 5hmC
www.sciencedirect.com 
distribution. Since there is no enrichment step before

sequencing in either TAB-seq or oxBS-Seq, the final

results from both methods reflect the absolute 5hmC

level at each site.

The base-resolution 5hmC profiling methods are capable

of detecting orphan 5hmCs (i.e. 5hmCs outside of the

regions with clustered 5hmCs), which tend to escape the

detection of affinity-based methods (Figure 3). Moreover,

high-resolution profiles can also reveal some patterns that

are difficult to discover from affinity-based method. For

instance, while the affinity-based methods showed that

5hmC is enriched at pluripotent transcription factor bind-

ing sites [14,15], the TAB-Seq result showed that 5hmC is

actually distributed around, but not within, transcription

factor consensus motifs [22�].

It is worth noting, however, that these base-resolution

approaches require very high sequencing depths to con-

fidently identify 5hmC with low abundance. For instance,

an average sequencing depth of 26.5� is required in

TAB-Seq to resolve a single 5hmC site with 20% abun-

dance of 5hmC at a false discovery rate < 5% [22�]. In

addition, even higher sequencing depth is required when

less abundant 5hmC needs to be identified or if the 5mC

to 5caC conversion rate is not high enough. Similarly, high

sequencing depth is also required for oxBS-Seq. A prac-

tical solution is to combine TAB-seq and oxBS-seq with

reduced representation bisulfite sequencing (RRBS),

which allows selective, but deep, sequencing of a fraction

of the genome that is highly enriched for CGIs [56]. As

illustrated by Booth et al., only �25 million 40-bp short

reads are required to achieve an average sequencing

depth of �120� by combining oxBS-Seq with RRBS

(namely oxidative RRBS, or oxRRBS) [21�], making this

method very cost-efficient and suitable for most appli-

cations. However, an important disadvantage of oxRRBS

method is that the oxidation step leads to significant DNA

degradation and requires relatively large amount of start-

ing DNA, which may limit the application of oxRRBS to

very rare samples such as preimplantation embryos and

primordial germ cells (PGCs) [21�]. Since the enzymatic

treatments in TAB-Seq are quite mild, examining 5hmC

distribution through a combination of TAB-seq and
Current Opinion in Cell Biology 2013, 25:289–296
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RRBS may be promising. Such a method, namely Tet-

assisted RRBS, is likely to provide the power of 5hmC

base-resolution detection in CGIs for rare samples.

Concluding remarks
Ever since the discovery of 5hmC and Tet family

proteins in 2009, there has been tremendous progress

in understanding their distribution and function. Bio-

chemical and genetic studies have demonstrated  that the

Tet family proteins play important roles in ESCs, hema-

topoiesis, PGC development, and embryonic develop-

ment. It is also clear that 5hmC can serve as an

intermediate in DNA demethylation. Despite these pro-

gresses, several important questions regarding the func-

tion of 5hmC still remain. First, what are the

physiological context and relative importance of the

various demethylation pathways that involve 5hmC?

Second, what are the effects of 5hmC on transcriptional

regulation and how is its role modulated by its location

and other epigenetic modifications? Third, if 5hmC is a

bona fide epigenetic mark, how is it maintained during

DNA replication? Fourth, what is the dynamics of 5hmC

in PGC and embryonic development and how is its

dynamics linked to epigenetic reprogramming and func-

tion? The limitation of 5hmC detection is currently the

major barrier to addressing these questions. With

the Tet-assisted RRBS method we proposed above,

and the fast development of single-molecule DNA

sequencing technologies [57–59], we will soon be able

to address these questions and have a greater under-

standing of 5hmC as well as other cytosine modifications

in the genome.
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